

New insights on protein/DNA non specific interaction: the DNase I/DNA model

Institut national de la santé et de la recherche médicale

Marc Guéroult^{1,2}, Josephine Abi Ghanem^{1,2}, Brahim Heddi^{2,\$}, Marc Lavigne³, Marc Baaden², Brigitte Hartmann^{1,2}

¹:DSIMB, Inserm UMR-S 665, Univ. Paris Diderot-Paris 7, Institut National de la Transfusion Sanguine (INTS), 6 rue Alexandre Cabanel 75015 Paris, France; boratoire de Biochimie Théorique, UPR CNRS 9080, Univ. Paris Diderot-Paris 7, Institut de Biloogie Physico-Chimique (IBPC), 13 rue Pierre et Marie Curie, 75005 Paris, France; ²: Department of Virology, Unit of Structural Virology, Pasteur Institut, 25 nue du Dr Roux, 75724 Paris ceder 15, France; ³: present adress : School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, SPMS PAP 05-08, Singapore 637371 SMB

The molecular basis of protein/DNA non-specific interactions are often elusive. DNase I/DNA system was chosen as a representative and rather simple model of non-specific complex. DNase I is an enzyme that cleaves the phosphodiester backbone of the DNA double helix **in presence of Ca²⁺ and Mg²⁺** DNase I at low concentration cleaves the DNA phosphate linkages with **variable probabilities**.

Where are located the counterions? What is their role? Which DNA properties influence the cleavage efficiency?

