High Quality Ray-Casting Visualisation on GPU:

From Small Molecules to Macromolecular Systems

M. Chavent¹, A. Vanel², B. Levy³, A. Tek¹, B. Raffin², M. Baaden¹

¹Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Théorique, CNRS UPR 9080, F-75005 Paris, France. ²ID-IMAG, CNRS/INPG/INRIA/UJF, Grenoble, France.

3Equipe ALICE, Nancy Université, LORIA, 54506 Vandoeuvre-les-Nancy Cedex, France

Ray-Casting Principle

GPU Ray-Casting Principle

First, it is necessary to represent a simple triangulated envelop (the cube) using OpenGL. This envelop defines a set of pixels on the screen. For each pixel, we defined a ray with each screen pixel as origin and oriented orthogonally to the screen. In this envelop, we defined a surface equation (sphere) then we calculate the potential intersection between the rays and the surface. If the ray intersect the sphere origin pixel is kept otherwise the pixel is removed. Then, using sphere equation it is possible to define the surface lighting. The interest of this method is that, except cube creation, the entire process is calculated on GPU. There are several advantages:

1 - Create smooth surface with few triangles.

Coarse Grained Model

Bond evolution between two water molecules

- 2 Have a pixel accurate surface for all level of zoom (see ParM filament).
 - 3 Use GPU capabilities that accelerate calculations.

This principle has already been used to represent molecular surface [1] and is, here, used to represent different types of molecular metaphors.

Molecular Representations

Classical representations as Ball & Stick, Licorice or Van der Waals are possible to depict with this method. We have also implemented a new representation that we named HyperBalls. With this depiction, cylinders are replaced by hyperboloids that can smoothly connect the atom spheres. Interestingly, it is possible to adapt hyperboloids in order to depict bond evolution (see water molecules at the top) which is not possible using cylinders. Furthermore, this representation

All atoms Ball & Stick

Trace

Macromolecular Systems Visualization

As explained before, this method is often more efficient to display interactively a huge number of atoms, indeed with a better image quality because there are less triangles to represent atoms or bonds. Thus, if we compare our results - in frame per second with existing softwares (see table at the bottom), we can display the same molecules 5 to 6 times faster that can allow the user to move interactively the huge molecules that is impossible for tested molecular wiewer with frame rates under 10 fps.

To conclude, we present an efficient method to visualize interactively from small molecules to huge macromolecular systems with a high quality rendering. We hope that a molecular viewer based on this method will be freely available in the next months. For the moment, just ask for demos or videos.

Comparison between Ray-Casting method and two molecular viewers

Molecule	VMD	MacPyMOL	Ray-Casting
GroEL-GroES (CPK)	4	3	28
ParM Filament (Licorice)	3	9	26
Virus Capsid (VdW)	4	3	21

In fps on MacOS 10.5.8 with an Nvidia GTX 285 graphic card (1024² screen)

References:

1. Chavent, M.; Levy, B.; Maigret, B. J Mol Graph Model 2008, 27(2), 209-216.

Acknowledgments:

Spring Network Model

coarse grained or spring network models. This visualization could be also useful to represent ion coordination: to depict links between ion and other molecules or to define the cage that envelop the ion.

is well adapted to represent

As presented on this poster, it is possible color molecular to metaphors by atom type, chain name, residue name, residue type (not shown) or other user defined colors

Mg ion coordination visualizations

ParM filament (~65,500 atoms)